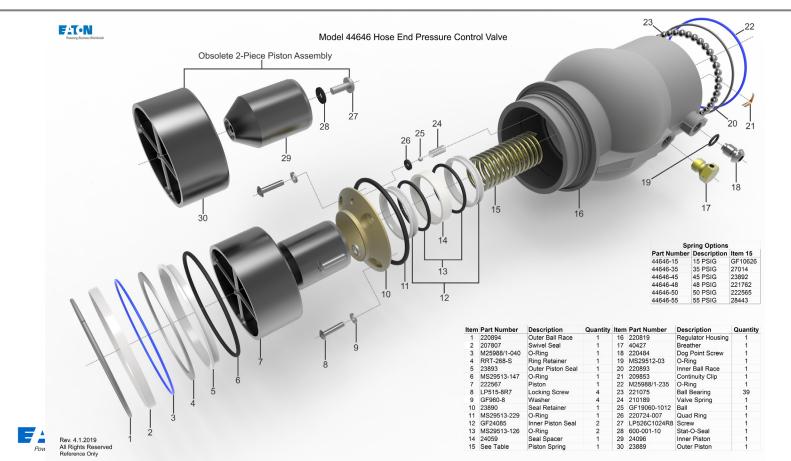




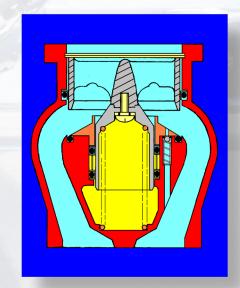
Bill Moody – Product Sales Manager Eaton Carter Ground Fueling

# Hose End Pressure Control Valves – HEPCV (Direct acting)









© 2013 Eaton. All Rights Reserved.

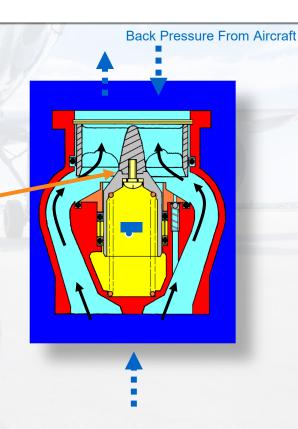
#### Hose End Pressure Control Valves - HEPCV



# **HEPCV** Operation

# Piston Fully Open



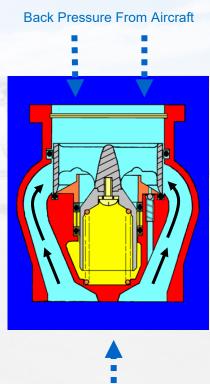



### **HEPCV** Operation

### **Piston Closing**

Back pressure acts upon this surface of the inner piston.

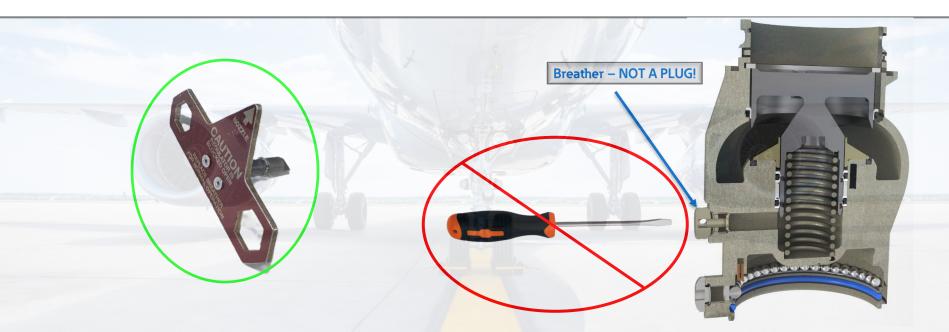
The piston will start to move at about 22-26 psi






### **HEPCV** Operation

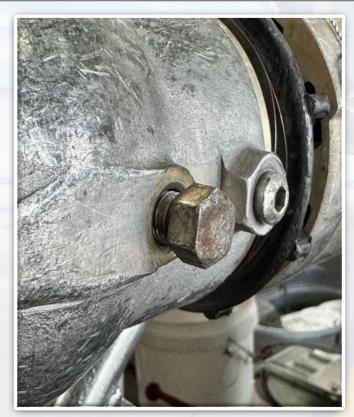
Piston Closed


Back pressure greater than the spring rating i.e. 45 psi causes piston to close.








### Using the Block out Tool



- Using the 61656 Block Out tool, remove the breather from the HEPCV.
- Insert the block out tool and rotate so that the around is pointing towards the nozzle



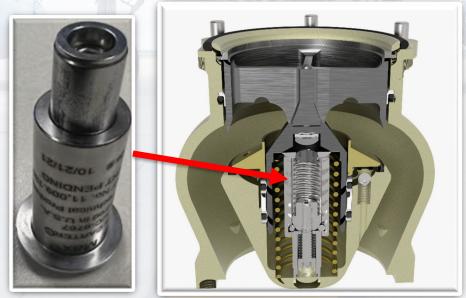
# Wear Examples from the field







## Troubleshooting steps for suspected out of range HEPCV


- <u>Check inlet pressure</u>. If more than 120psi then you can expect to see a higher control pressure when testing. Review with test rack operator to determine if inlet pressure can be reduced by adjusting the pump pressure, pressure relief valves, or partially closing a valve just upstream of the nozzle being tested.
- <u>Cycle the HEPCV</u>. For new HEPCVs it may be necessary to cycle the HEPCV to "break-in" the seals. To perform this, obtain max flow, close valve downstream of the nozzle to achieve at least 20psi of nozzle pressure, cycle the valve downstream of the nozzle from 20 psi nozzle pressure to fully closed and back to 20 psi nozzle pressure within 3-5 seconds. Perform this cycle at least 5-10 times. Perform your HEPCV pressure control testing procedure again to see if control pressure is now within range.
- <u>Leaking from the Breather</u> If a constant drip while fueling then suspect eh Teflon seals around the inner piston are worn or damaged. If only a 'spit' of fuel during a surge, this is normal operation of the valve. Fuel collects in the inner chamber of the valve as the piston moves in and out of the Teflon seals. After time this fuel will expel through the breather.



### The FlowMaximizer (FlowMax®)

#### Eaton Carter® HEPCV with Gammon Flow Maximizer (FlowMax®)

FlowMax is an innovative and cost-effective way to increase refueling performance. Eaton Carter® teamed with Gammon Technical Products® to evaluate, test, field trial, and improve the FlowMax HEPCV design. Gammon Technical products developed the FlowMax to address inherent performance issues related to the standard HEPCV design.



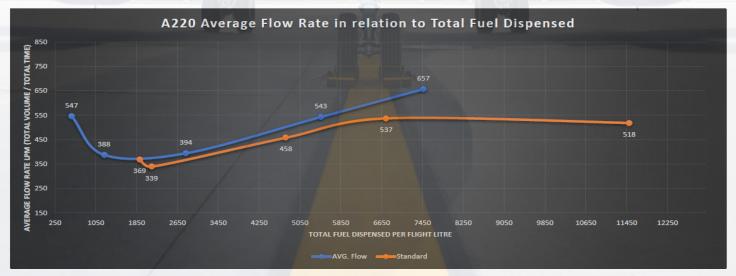


#### FIELD 737 FUELING EVENTS – AVG Improvement 20.1%

| Aircraft | Peak Flow Rate | Total Fuel | Actual<br>Fueling Time | Nozzle Pressure at end | HECV<br>Config | AVG.<br>Flow |
|----------|----------------|------------|------------------------|------------------------|----------------|--------------|
| 737      | 302            | 1354       | 4.9                    | 38                     | FlowMax        | 276          |
| 737      | 435            | 3214       | 8.27                   | 32                     | FlowMax        | 389          |
| 737      | 372            | 4142       | 13                     | 13                     | FlowMax        | 319          |
| 737      | 390            | 5176       | 15                     | 15                     | FlowMax        | 345          |
| 737      | 384            | 5289       | 17                     | 17                     | FlowMax        | 311          |

| Aircraft | Peak Flow Rate | Total Fuel | Actual<br>Fueling<br>Time | Nozzle Pressure at end | HECV<br>Config | AVG.<br>Flow |
|----------|----------------|------------|---------------------------|------------------------|----------------|--------------|
| 737      | 276            | 1097       | 4.27                      | 38                     | 45 HEPCV       | 257          |
| 737      | 348            | 1934       | 8                         | 29                     | 46 HEPCV       | 242          |
| 737      | 257            | 2069       | 7.75                      | 36                     | 47 HEPCV       | 267          |
| 737      | 377            | 4874       | 18                        | 41                     | 48 HEPCV       | 271          |
| 737      | 374            | 5203       | 19                        | 42                     | 49 HEPCV       | 274          |




#### FIELD A220 FUELING EVENTS – AVG Improvement 12.1%

| Aircraft | Peak Flow Rate | Total Fuel | Actual<br>Fueling Time | Nozzle Pressure at end | HECV Config   | AVG. Flow |
|----------|----------------|------------|------------------------|------------------------|---------------|-----------|
| 220      | 400            | 574        | 1.05                   | 40                     | FLowMax 48psi | 547       |
| 220      | 420            | 1213       | 3.13                   | 44                     | FLowMax 48psi | 388       |
| 220      | 420            | 2817       | 7.15                   | 42                     | FLowMax 48psi | 394       |
| 220      | 680            | 5460       | 10.06                  | 40                     | FLowMax 48psi | 543       |
| 220      | 680            | 7469       | 11.37                  | 42                     | FLowMax 48psi | 657       |

|          |                |            |                        |                        |             | 000       |
|----------|----------------|------------|------------------------|------------------------|-------------|-----------|
| Aircraft | Peak Flow Rate | Total Fuel | Actual<br>Fueling Time | Nozzle Pressure at end | HECV Config | AVG. Flow |
| 220      | 400            | 1910       | 5.18                   | 36                     | 48PSI HEPCV | 369       |
| 220      | 400            | 2144       | 6.32                   | 40                     | 48PSI HEPCV | 339       |
| 220      | 680            | 4774       | 10.43                  | 44                     | 48PSI HEPCV | 458       |
| 220      | 660            | 6740       | 12.55                  | 38                     | 48PSI HEPCV | 537       |
| 220      | 700            | 11500      | 22.19                  | 30                     | 48PSI HEPCV | 518       |

444

13





© 2013 Eaton. All Rights Reserved.

#### FlowMax FAQ

#### How can we order the FlowMax?

• The FLowMax can be ordered through any of our distributors worldwide. It can be ordered as a standalone device, in a rebuild kit for the HEPCV, a complete HEPCV with FLowMax installed, or when ordering a new nozzle with an HEPCV fitted w/ FlowMax..

#### Will FlowMax fit in any Carter HEPCV?

• Yes the device will work in all three of the Carter Brand HEPCV with spring ratings of 35psi, 45psi, 48psi, and 50PSi. It will fit into the swivel to swivel (44646) swivel to flange (47013) and the Flange to flange (60129) models

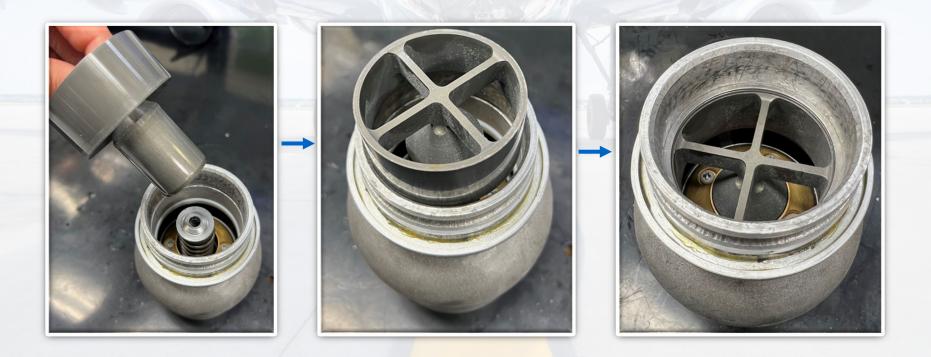
#### Does the device need to be adjusted for different spring ratings?

• No. As this is a mechanical device that is not affected by flow or pressure it does not need to be adjusted for different spring rating usage. The device is adjusted prior to shipment for optimal performance.

#### Does the device need to be calibrated.

No. The device operates by the mechanical interaction with the piston. As the piston pushes against the device and overcomes the spring rated
pressure the device collapses under that load.




# Installing FlowMax

• The FlowMax is installed inside the housing along with the spring as shown in the illustration.





# Installing FlowMax





